Module-oriented automatic differentiation in nonlinear control

In this paper, a module-oriented automatic differentiation (MAD) approach is presented based on traditional automatic differentiation algorithms. This approach can well exploit the sparsity of the model by partitioning it into a series of sequential modules and choosing the best differentiation algo...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Li, Jin (author)
מחברים אחרים: Tan, Yuejin (author), Liao, Liangcai (author)
פורמט: article
שפה:eng
יצא לאור: 2007
נושאים:
גישה מקוונת:http://bibdigital.epn.edu.ec/handle/15000/9309
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
סיכום:In this paper, a module-oriented automatic differentiation (MAD) approach is presented based on traditional automatic differentiation algorithms. This approach can well exploit the sparsity of the model by partitioning it into a series of sequential modules and choosing the best differentiation algorithm for each module accordingly. Numerical results show that for nonlinear system, module-oriented automatic differentiation can calculate the Lie derivatives and Jacobians efficiently.