Modelo de predicción climática

The objective of this degree work was to develop a climate prediction model for weather forecasting in Canton Bolivar, it was necessary to use techniques such as the review of the state of the art, data collection and analysis. The information and results of other research were summarized, with the...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Kuffó Zambrano, Marjorie Stefany (author)
Outros Autores: Pinargote Zambrano, Juan José (author)
Formato: bachelorThesis
Idioma:spa
Publicado em: 2021
Assuntos:
Acesso em linha:http://repositorio.espam.edu.ec/handle/42000/1568
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
_version_ 1841312328395522048
author Kuffó Zambrano, Marjorie Stefany
author2 Pinargote Zambrano, Juan José
author2_role author
author_facet Kuffó Zambrano, Marjorie Stefany
Pinargote Zambrano, Juan José
author_role author
collection Repositorio Escuela Superior Politécnica Agropecuaria de Manabí
dc.contributor.none.fl_str_mv López Zambrano, Javier Hernán
dc.creator.none.fl_str_mv Kuffó Zambrano, Marjorie Stefany
Pinargote Zambrano, Juan José
dc.date.none.fl_str_mv 2021-12-02T20:58:09Z
2021-12-02T20:58:09Z
2021-10
dc.format.none.fl_str_mv 71 p.
application/pdf
dc.identifier.none.fl_str_mv http://repositorio.espam.edu.ec/handle/42000/1568
dc.language.none.fl_str_mv spa
dc.publisher.none.fl_str_mv Calceta: ESPAM MFL
dc.rights.none.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Ecuador
http://creativecommons.org/licenses/by-nc-nd/3.0/ec/
info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:Repositorio Escuela Superior Politécnica Agropecuaria de Manabí
instname:Escuela Superior Politécnica Agropecuaria de Manabí
instacron:ESPAM
dc.subject.none.fl_str_mv Modelo de predicción
Pronóstico del clima
Series de tiempo climáticas
Aprendizaje automático
dc.title.none.fl_str_mv Modelo de predicción climática
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bachelorThesis
description The objective of this degree work was to develop a climate prediction model for weather forecasting in Canton Bolivar, it was necessary to use techniques such as the review of the state of the art, data collection and analysis. The information and results of other research were summarized, with the purpose of being up to date with the contributions made within the last five years about the object of study. Then, using a comparative analysis within the state of the art, it was determined that the most feasible model for its application within the work was the Recurrent Neural Network in conjunction with the structure of the long short- term memory or LSTM algorithm. Next, historical climate information pertaining to the area was collected, and for training and testing the model, records from the ESPAM - MFL meteorological station and the meteorological website Power Data Access Viewer (NASA) were used, and a data exploration and Pearson correlation was also performed to observe how related the variables of the datasets are, determining that they have independent behaviors among them. Finally, the model was built using the Python programming language in version 3.7.5, 150 epochs were defined for training, obtaining better results in the variables of humidity, maximum temperature and minimum temperature, with an accuracy between the real and predicted values of 89.27%, 92.00%, and 90.61% with the data from the meteorological station and with the second dataset they obtained 93.75%, 94.54%, and 96.96%.
eu_rights_str_mv openAccess
format bachelorThesis
id ESPAM_1ca8a24dd7f514fbe306193f3ffd65b6
instacron_str ESPAM
institution ESPAM
instname_str Escuela Superior Politécnica Agropecuaria de Manabí
language spa
network_acronym_str ESPAM
network_name_str Repositorio Escuela Superior Politécnica Agropecuaria de Manabí
oai_identifier_str oai:repositorio.espam.edu.ec:42000/1568
publishDate 2021
publisher.none.fl_str_mv Calceta: ESPAM MFL
reponame_str Repositorio Escuela Superior Politécnica Agropecuaria de Manabí
repository.mail.fl_str_mv .
repository.name.fl_str_mv Repositorio Escuela Superior Politécnica Agropecuaria de Manabí - Escuela Superior Politécnica Agropecuaria de Manabí
repository_id_str 0
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Ecuador
http://creativecommons.org/licenses/by-nc-nd/3.0/ec/
spelling Modelo de predicción climáticaKuffó Zambrano, Marjorie StefanyPinargote Zambrano, Juan JoséModelo de predicciónPronóstico del climaSeries de tiempo climáticasAprendizaje automáticoThe objective of this degree work was to develop a climate prediction model for weather forecasting in Canton Bolivar, it was necessary to use techniques such as the review of the state of the art, data collection and analysis. The information and results of other research were summarized, with the purpose of being up to date with the contributions made within the last five years about the object of study. Then, using a comparative analysis within the state of the art, it was determined that the most feasible model for its application within the work was the Recurrent Neural Network in conjunction with the structure of the long short- term memory or LSTM algorithm. Next, historical climate information pertaining to the area was collected, and for training and testing the model, records from the ESPAM - MFL meteorological station and the meteorological website Power Data Access Viewer (NASA) were used, and a data exploration and Pearson correlation was also performed to observe how related the variables of the datasets are, determining that they have independent behaviors among them. Finally, the model was built using the Python programming language in version 3.7.5, 150 epochs were defined for training, obtaining better results in the variables of humidity, maximum temperature and minimum temperature, with an accuracy between the real and predicted values of 89.27%, 92.00%, and 90.61% with the data from the meteorological station and with the second dataset they obtained 93.75%, 94.54%, and 96.96%.El presente trabajo de titulación tuvo como objetivo desarrollar un modelo de predicción climática para el pronóstico meteorológico en el Cantón Bolívar, fue necesario emplear técnicas como la revisión bibliográfica, recopilación de datos y análisis. Se resumió la información y resultados de otras investigaciones, con el propósito de estar al tanto con las aportaciones realizadas dentro de los últimos cinco años acerca del objeto de estudio. Luego, empleando un análisis comparativo dentro del estado del arte, se determinó que el modelo más factible para su aplicación dentro del trabajo fue la Red Neuronal Recurrente en conjunto a la estructura del algoritmo de memoria larga a corto plazo o LSTM. Seguidamente, se recopiló información histórica del clima perteneciente a la zona, para el entrenamiento y testeo del modelo se empleó registros de la estación Meteorológica de la ESPAM - MFL y del sitio web meteorológico Power Data Access Viewer (NASA), efectuándose también una exploración de datos y la correlación de Pearson para observar cuán relacionadas están las variables de los dataset, determinando que las mismas poseen comportamientos independientes entre sí. Finalmente, se construyó el modelo utilizando el lenguaje de programación Python en una versión 3.7.5, se definieron 150 epochs para el entrenamiento, obteniéndose mejores resultados en las variables de la humedad, temperatura máxima y la temperatura mínima, teniendo una exactitud entre los valores reales y predichos del 89.27%, 92.00%, y 90.61% con los datos de estación meteorológica y con el segundo dataset consiguieron un 93.75%, 94.54%, y 96.96%.Calceta: ESPAM MFLLópez Zambrano, Javier Hernán2021-12-02T20:58:09Z2021-12-02T20:58:09Z2021-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis71 p.application/pdfhttp://repositorio.espam.edu.ec/handle/42000/1568spaAtribución-NoComercial-SinDerivadas 3.0 Ecuadorhttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/info:eu-repo/semantics/openAccessreponame:Repositorio Escuela Superior Politécnica Agropecuaria de Manabíinstname:Escuela Superior Politécnica Agropecuaria de Manabíinstacron:ESPAM2021-12-02T20:58:10Zoai:repositorio.espam.edu.ec:42000/1568Institucionalhttps://repositorio.espam.edu.ec/Universidad públicahttp://www.espam.edu.ec/https://repositorio.espam.edu.ec/oai.Ecuador...opendoar:02025-08-24T05:09:21.432602Repositorio Escuela Superior Politécnica Agropecuaria de Manabí - Escuela Superior Politécnica Agropecuaria de Manabítrue
spellingShingle Modelo de predicción climática
Kuffó Zambrano, Marjorie Stefany
Modelo de predicción
Pronóstico del clima
Series de tiempo climáticas
Aprendizaje automático
status_str publishedVersion
title Modelo de predicción climática
title_full Modelo de predicción climática
title_fullStr Modelo de predicción climática
title_full_unstemmed Modelo de predicción climática
title_short Modelo de predicción climática
title_sort Modelo de predicción climática
topic Modelo de predicción
Pronóstico del clima
Series de tiempo climáticas
Aprendizaje automático
url http://repositorio.espam.edu.ec/handle/42000/1568