Artículo Científico. Real-time face detection using artificial neural networks.
In this paper, we propose a model for face detection that works in both real-time and unstructured environments. for feature extraction, we applied the HOG (Histrograms of Oriented Gradients) technique in a cononical window. For classification, we used a feed-forward neural network. We tested the pe...
Sparad:
Huvudupphovsman: | |
---|---|
Övriga upphovsmän: | |
Materialtyp: | article |
Språk: | eng |
Publicerad: |
2017
|
Ämnen: | |
Länkar: | http://repositorio.espe.edu.ec/handle/21000/13928 |
Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
Sammanfattning: | In this paper, we propose a model for face detection that works in both real-time and unstructured environments. for feature extraction, we applied the HOG (Histrograms of Oriented Gradients) technique in a cononical window. For classification, we used a feed-forward neural network. We tested the performance of the proposed model at detecting faces in sequences of color images. For this task, we created a database containing color image patches of faces and background to train the neural network and color images of 320 x 240 to test the model. The database is available at http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/. To achieve real-time, we split the model into several modules that run in parallel. the proposed model exhibited an accuracy of 91.4% and demonstrated robustness to changes in illumination, pose and occlusion. For the tests, we used a 2-core-2.5 GHz PC with 6 GB of RAM memory, where input frames of 320 x 240 were processed in an average time of 81 ms. |
---|