Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima
Los fenómenos geológicos, como las erupciones volcánicas, son uno de los responsables de causar grandes pérdidas de vidas humanas. Por lo tanto, es crucial adoptar medidas preventivas, como la monitorización para reducir los impactos negativos de estos eventos naturales devastadores. En este context...
Պահպանված է:
Հիմնական հեղինակ: | |
---|---|
Ձևաչափ: | bachelorThesis |
Լեզու: | spa |
Հրապարակվել է: |
2023
|
Խորագրեր: | |
Առցանց հասանելիություն: | http://repositorio.espe.edu.ec/handle/21000/37366 |
Ցուցիչներ: |
Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
|
_version_ | 1838707395086254080 |
---|---|
author | Castillo Tipantuña, Edwin Alexander |
author_facet | Castillo Tipantuña, Edwin Alexander |
author_role | author |
collection | Repositorio Universidad de las Fuerzas Armadas |
dc.contributor.none.fl_str_mv | Lara Cueva, Román Alcides |
dc.creator.none.fl_str_mv | Castillo Tipantuña, Edwin Alexander |
dc.date.none.fl_str_mv | 2023-10-31T16:29:47Z 2023-10-31T16:29:47Z 2023 |
dc.format.none.fl_str_mv | application/pdf application/pdf application/pdf |
dc.identifier.none.fl_str_mv | Castillo Tipantuña, Edwin Alexander (2023). Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima. Carrera de Telecomunicaciones. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí. 058435 http://repositorio.espe.edu.ec/handle/21000/37366 |
dc.language.none.fl_str_mv | spa |
dc.publisher.none.fl_str_mv | Universidad de las Fuerzas Armadas ESPE. Carrera de Telecomunicaciones. |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:Repositorio Universidad de las Fuerzas Armadas instname:Universidad de las Fuerzas Armadas instacron:ESPE |
dc.subject.none.fl_str_mv | MICROSISMOS MACHINE LEARNING DETECCIÓN MONITORIZACIÓN LLAIMA |
dc.title.none.fl_str_mv | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
dc.type.none.fl_str_mv | info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bachelorThesis |
description | Los fenómenos geológicos, como las erupciones volcánicas, son uno de los responsables de causar grandes pérdidas de vidas humanas. Por lo tanto, es crucial adoptar medidas preventivas, como la monitorización para reducir los impactos negativos de estos eventos naturales devastadores. En este contexto, en Chile se encuentra el volcán Llaima que es uno de los 4 volcanes más activos de América del Sur, por este motivo la Red Nacional de Vigilancia Volcánica de Chile (RNVV) a través de expertos del Observatorio Vulcanológico De los Andes del Sur (OVDAS) monitorizan y analizan la actividad sísmica de los volcanes, con la misión de proveer información oportuna respecto a la actividad volcánica y precautelar vidas en presencia de este tipo de desastres, sin embargo el análisis e interpretación de los datos recolectados son en grandes cantidades y su análisis tiene un nivel de complejidad alto por esta razón se buscan nuevos métodos que permitan realizar este proceso de una manera más rápida y eficiente. El trabajo de titulación presenta un algoritmo inteligente basado en Machine Learning tradicional que permite detectar microsismos del volcán Llaima en registros de 20 minutos. La base de datos utilizada consta de 3592 microsismos recopilados de la estación LAV durante los años 2010 y 2016. El detector se compone de 3 etapas, en la primera, realiza un preprocesamiento que incluye filtrado, normalización, generación de ruido y combinación Microsismo - Ruido. La segunda etapa implica el procesamiento que incluye técnicas de segmentación, etiquetado y balanceo. Por último, se lleva a cabo la etapa de entrenamiento de los algoritmos k Vecinos Cercanos, Máquina de Vector de Soporte y Árbol de Decisión con datos en el dominio temporal, dominio frecuencial y la extracción de las 84 características. El detector alcanza en clasificación un: 97.41% Exactitud, 92.73% Precisión,93.97% Sensibilidad, 98.23% Especificidad, 0.038 en BER. En la fase de detección: 99.66% Exactitud, 99.26% Precisión, 99.26% Sensibilidad, 99.37% Especificidad, 0.006 en BER |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | ESPE_d60eaef12ed1570c9fd61eaff65fdbd3 |
identifier_str_mv | Castillo Tipantuña, Edwin Alexander (2023). Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima. Carrera de Telecomunicaciones. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí. 058435 |
instacron_str | ESPE |
institution | ESPE |
instname_str | Universidad de las Fuerzas Armadas |
language | spa |
network_acronym_str | ESPE |
network_name_str | Repositorio Universidad de las Fuerzas Armadas |
oai_identifier_str | oai:repositorio.espe.edu.ec:21000/37366 |
publishDate | 2023 |
publisher.none.fl_str_mv | Universidad de las Fuerzas Armadas ESPE. Carrera de Telecomunicaciones. |
reponame_str | Repositorio Universidad de las Fuerzas Armadas |
repository.mail.fl_str_mv | . |
repository.name.fl_str_mv | Repositorio Universidad de las Fuerzas Armadas - Universidad de las Fuerzas Armadas |
repository_id_str | 2042 |
spelling | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán LlaimaCastillo Tipantuña, Edwin AlexanderMICROSISMOSMACHINE LEARNINGDETECCIÓNMONITORIZACIÓNLLAIMALos fenómenos geológicos, como las erupciones volcánicas, son uno de los responsables de causar grandes pérdidas de vidas humanas. Por lo tanto, es crucial adoptar medidas preventivas, como la monitorización para reducir los impactos negativos de estos eventos naturales devastadores. En este contexto, en Chile se encuentra el volcán Llaima que es uno de los 4 volcanes más activos de América del Sur, por este motivo la Red Nacional de Vigilancia Volcánica de Chile (RNVV) a través de expertos del Observatorio Vulcanológico De los Andes del Sur (OVDAS) monitorizan y analizan la actividad sísmica de los volcanes, con la misión de proveer información oportuna respecto a la actividad volcánica y precautelar vidas en presencia de este tipo de desastres, sin embargo el análisis e interpretación de los datos recolectados son en grandes cantidades y su análisis tiene un nivel de complejidad alto por esta razón se buscan nuevos métodos que permitan realizar este proceso de una manera más rápida y eficiente. El trabajo de titulación presenta un algoritmo inteligente basado en Machine Learning tradicional que permite detectar microsismos del volcán Llaima en registros de 20 minutos. La base de datos utilizada consta de 3592 microsismos recopilados de la estación LAV durante los años 2010 y 2016. El detector se compone de 3 etapas, en la primera, realiza un preprocesamiento que incluye filtrado, normalización, generación de ruido y combinación Microsismo - Ruido. La segunda etapa implica el procesamiento que incluye técnicas de segmentación, etiquetado y balanceo. Por último, se lleva a cabo la etapa de entrenamiento de los algoritmos k Vecinos Cercanos, Máquina de Vector de Soporte y Árbol de Decisión con datos en el dominio temporal, dominio frecuencial y la extracción de las 84 características. El detector alcanza en clasificación un: 97.41% Exactitud, 92.73% Precisión,93.97% Sensibilidad, 98.23% Especificidad, 0.038 en BER. En la fase de detección: 99.66% Exactitud, 99.26% Precisión, 99.26% Sensibilidad, 99.37% Especificidad, 0.006 en BERUniversidad de las Fuerzas Armadas ESPE. Carrera de Telecomunicaciones.Lara Cueva, Román Alcides2023-10-31T16:29:47Z2023-10-31T16:29:47Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfapplication/pdfapplication/pdfCastillo Tipantuña, Edwin Alexander (2023). Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima. Carrera de Telecomunicaciones. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí.058435http://repositorio.espe.edu.ec/handle/21000/37366spainfo:eu-repo/semantics/openAccessreponame:Repositorio Universidad de las Fuerzas Armadasinstname:Universidad de las Fuerzas Armadasinstacron:ESPE2024-07-27T11:07:45Zoai:repositorio.espe.edu.ec:21000/37366Institucionalhttps://repositorio.espe.edu.ec/Universidad públicahttps://www.espe.edu.ec/https://repositorio.espe.edu.ec/oai.Ecuador...opendoar:20422024-07-27T11:07:45Repositorio Universidad de las Fuerzas Armadas - Universidad de las Fuerzas Armadasfalse |
spellingShingle | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima Castillo Tipantuña, Edwin Alexander MICROSISMOS MACHINE LEARNING DETECCIÓN MONITORIZACIÓN LLAIMA |
status_str | publishedVersion |
title | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
title_full | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
title_fullStr | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
title_full_unstemmed | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
title_short | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
title_sort | Creación de algoritmos inteligentes basados en la teoría de Machine Learning tradicional para detección de eventos sísmicos en el volcán Llaima |
topic | MICROSISMOS MACHINE LEARNING DETECCIÓN MONITORIZACIÓN LLAIMA |
url | http://repositorio.espe.edu.ec/handle/21000/37366 |