Revealing floristic variation and map uncertainties for different plant groups in western Amazonia

Questions Understanding spatial variation in floristic composition is crucial to quantify the extent, patchiness and connectivity of distinct habitats and their spatial relationships. Broad-scale variation in floristic composition and the degree of uniqueness of different regions remains poorly mapp...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zuquim, Gabriela (author)
Άλλοι συγγραφείς: Tuomisto, Hanna (author), Thaise, Emilio (author), Perez, Pablo (author), Ruokolainen, Kalle (author), Massaine Moulatlet, Gabriel (author), Van doninck, Jasper (author), Balslev, Henrik (author)
Μορφή: article
Έκδοση: 2021
Θέματα:
Διαθέσιμο Online:http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/524
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
_version_ 1840678923367612416
author Zuquim, Gabriela
author2 Tuomisto, Hanna
Thaise, Emilio
Perez, Pablo
Ruokolainen, Kalle
Massaine Moulatlet, Gabriel
Van doninck, Jasper
Balslev, Henrik
author2_role author
author
author
author
author
author
author
author_facet Zuquim, Gabriela
Tuomisto, Hanna
Thaise, Emilio
Perez, Pablo
Ruokolainen, Kalle
Massaine Moulatlet, Gabriel
Van doninck, Jasper
Balslev, Henrik
author_role author
collection Repositorio Universidad Regional Amazónica
dc.creator.none.fl_str_mv Zuquim, Gabriela
Tuomisto, Hanna
Thaise, Emilio
Perez, Pablo
Ruokolainen, Kalle
Massaine Moulatlet, Gabriel
Van doninck, Jasper
Balslev, Henrik
dc.date.none.fl_str_mv 2021
2022-05-10T18:01:37Z
2022-05-10T18:01:37Z
dc.format.none.fl_str_mv application/pdf
dc.identifier.none.fl_str_mv Zuquim, Gabriela & Tuomisto, Hanna & Perez, Pablo & Emilio, Thaise & Moulatlet, G. & Ruokolainen, Kalle & Van doninck, Jasper & Balslev, Henrik. (2021). Revealing floristic variation and map uncertainties for different plant groups in western Amazonia. Journal of Vegetation Science. 32. 10.1111/jvs.13081.
DOI:10.1111/jvs.13081
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/524
dc.language.none.fl_str_mv en
dc.publisher.none.fl_str_mv Scopus
dc.relation.none.fl_str_mv PRODUCIÓN CIENTIFICA- ARTÍCULOS CIENTÍFICOS;A-IKIAM-000290
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:Repositorio Universidad Regional Amazónica
instname:Universidad Regional Amazónica
instacron:IKIAM
dc.subject.none.fl_str_mv Plant community
Área of applicability
Remote sensing
Vegetation mapping,
Tropical forests,
Species-environmental relationships
Niche,
Juruá river,
Machine learning
Amazonian biogeography
Ferns
Palms
Melastomataceae
Zingiberales
dc.title.none.fl_str_mv Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
description Questions Understanding spatial variation in floristic composition is crucial to quantify the extent, patchiness and connectivity of distinct habitats and their spatial relationships. Broad-scale variation in floristic composition and the degree of uniqueness of different regions remains poorly mapped and understood in several areas across the globe. We here aim to map vegetation heterogeneity in Amazonia. Location Middle Juruá river region, Amazonas State, Brazil. Methods We mapped four plant groups by applying machine learning to scale-up locally observed community composition and using environmental and remote sensed variables as predictors, which were obtained as GIS-layers. To quantify how reliable our predictions were, we made an assessment of model transferability and spatial applicability. We also compared our floristic composition map to the official Brazilian national-level vegetation classification. Results The overall performance of our floristic models was high for all four plant groups, especially ferns, and the predictions were found to be spatially congruent and highly transferable in space. For some areas, the models were assessed not to be applicable, as the field sampling did not cover the spectral or environmental characteristics of those regions. Our maps show extensive habitat heterogeneity across the region. When compared to the Brazilian vegetation classification, floristic composition was relatively homogeneous within dense forests, while floristic heterogeneity in rainforests classified as open was high. Conclusion Our maps provide geoecological characterization of the regions and can be used to test biogeographical hypotheses, develop species distribution models and, ultimately, aid science-based conservation and land-use planning.
eu_rights_str_mv openAccess
format article
id IKIAM_814f2f0608b7dfb15aaa24dc3b4f6f15
identifier_str_mv Zuquim, Gabriela & Tuomisto, Hanna & Perez, Pablo & Emilio, Thaise & Moulatlet, G. & Ruokolainen, Kalle & Van doninck, Jasper & Balslev, Henrik. (2021). Revealing floristic variation and map uncertainties for different plant groups in western Amazonia. Journal of Vegetation Science. 32. 10.1111/jvs.13081.
DOI:10.1111/jvs.13081
instacron_str IKIAM
institution IKIAM
instname_str Universidad Regional Amazónica
language_invalid_str_mv en
network_acronym_str IKIAM
network_name_str Repositorio Universidad Regional Amazónica
oai_identifier_str oai:repositorio.ikiam.edu.ec:RD_IKIAM/524
publishDate 2021
publisher.none.fl_str_mv Scopus
reponame_str Repositorio Universidad Regional Amazónica
repository.mail.fl_str_mv .
repository.name.fl_str_mv Repositorio Universidad Regional Amazónica - Universidad Regional Amazónica
repository_id_str 0
spelling Revealing floristic variation and map uncertainties for different plant groups in western AmazoniaZuquim, GabrielaTuomisto, HannaThaise, EmilioPerez, PabloRuokolainen, KalleMassaine Moulatlet, GabrielVan doninck, JasperBalslev, HenrikPlant communityÁrea of applicabilityRemote sensingVegetation mapping,Tropical forests,Species-environmental relationshipsNiche,Juruá river,Machine learningAmazonian biogeographyFernsPalmsMelastomataceaeZingiberalesQuestions Understanding spatial variation in floristic composition is crucial to quantify the extent, patchiness and connectivity of distinct habitats and their spatial relationships. Broad-scale variation in floristic composition and the degree of uniqueness of different regions remains poorly mapped and understood in several areas across the globe. We here aim to map vegetation heterogeneity in Amazonia. Location Middle Juruá river region, Amazonas State, Brazil. Methods We mapped four plant groups by applying machine learning to scale-up locally observed community composition and using environmental and remote sensed variables as predictors, which were obtained as GIS-layers. To quantify how reliable our predictions were, we made an assessment of model transferability and spatial applicability. We also compared our floristic composition map to the official Brazilian national-level vegetation classification. Results The overall performance of our floristic models was high for all four plant groups, especially ferns, and the predictions were found to be spatially congruent and highly transferable in space. For some areas, the models were assessed not to be applicable, as the field sampling did not cover the spectral or environmental characteristics of those regions. Our maps show extensive habitat heterogeneity across the region. When compared to the Brazilian vegetation classification, floristic composition was relatively homogeneous within dense forests, while floristic heterogeneity in rainforests classified as open was high. Conclusion Our maps provide geoecological characterization of the regions and can be used to test biogeographical hypotheses, develop species distribution models and, ultimately, aid science-based conservation and land-use planning.Scopus2022-05-10T18:01:37Z2022-05-10T18:01:37Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfZuquim, Gabriela & Tuomisto, Hanna & Perez, Pablo & Emilio, Thaise & Moulatlet, G. & Ruokolainen, Kalle & Van doninck, Jasper & Balslev, Henrik. (2021). Revealing floristic variation and map uncertainties for different plant groups in western Amazonia. Journal of Vegetation Science. 32. 10.1111/jvs.13081.DOI:10.1111/jvs.13081http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/524enPRODUCIÓN CIENTIFICA- ARTÍCULOS CIENTÍFICOS;A-IKIAM-000290info:eu-repo/semantics/openAccessreponame:Repositorio Universidad Regional Amazónicainstname:Universidad Regional Amazónicainstacron:IKIAM2023-04-19T08:00:18Zoai:repositorio.ikiam.edu.ec:RD_IKIAM/524Institucionalhttps://repositorio.ikiam.edu.ec/Universidad públicahttps://www.ikiam.edu.ec/https://repositorio.ikiam.edu.ec/oaiEcuador...opendoar:02023-04-19T08:00:18falseInstitucionalhttps://repositorio.ikiam.edu.ec/Universidad públicahttps://www.ikiam.edu.ec/https://repositorio.ikiam.edu.ec/oai.Ecuador...opendoar:02023-04-19T08:00:18Repositorio Universidad Regional Amazónica - Universidad Regional Amazónicafalse
spellingShingle Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
Zuquim, Gabriela
Plant community
Área of applicability
Remote sensing
Vegetation mapping,
Tropical forests,
Species-environmental relationships
Niche,
Juruá river,
Machine learning
Amazonian biogeography
Ferns
Palms
Melastomataceae
Zingiberales
status_str publishedVersion
title Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
title_full Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
title_fullStr Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
title_full_unstemmed Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
title_short Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
title_sort Revealing floristic variation and map uncertainties for different plant groups in western Amazonia
topic Plant community
Área of applicability
Remote sensing
Vegetation mapping,
Tropical forests,
Species-environmental relationships
Niche,
Juruá river,
Machine learning
Amazonian biogeography
Ferns
Palms
Melastomataceae
Zingiberales
url http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/524