Synthesis of Bi4O5I2 microbars for pollutant degradation through a photocatalytic process

Bi4O5I2 microbars were synthesized by a hydrothermal method and then characterized using a set of instrumental techniques. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed the successful preparation of Bi4O5I2 microbars. X-ray diffraction (XRD) patterns...

全面介紹

Saved in:
書目詳細資料
主要作者: Zuarez Chamba, Michael (author)
其他作者: Tuba Guamán, Damián Francisco (author), Quishpe, Miguel (author), Pazmiño, Katherine (author), Vizuete, Karla (author), Debut, Alexis (author), Cisneros Pérez, Pablo A. (author), Reinoso, Carlos (author), Santacruz, Cristian (author), Salgado, Andrea (author), Arroyo, Carlos R. (author), Iza, Peter (author), Miguel, Natividad (author), Niño Ruíz, Zulay (author)
格式: article
出版: 2023
主題:
在線閱讀:https://doi.org/10.1016/j.matlet.2023.133888
http://repositorio.ikiam.edu.ec/jspui/handle/RD_IKIAM/647
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Bi4O5I2 microbars were synthesized by a hydrothermal method and then characterized using a set of instrumental techniques. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed the successful preparation of Bi4O5I2 microbars. X-ray diffraction (XRD) patterns of the sample were well indexed to the monoclinic phase of Bi4O5I2. The elemental composition was studied by energy dispersive X-ray spectroscopy (EDS), and it was similar to the theorical formula Bi4O5I2. The synthetized microbars despite of their low visible-light response could degrade up to 92.66% of Bisphenol A under white light-emitting diode (LED) light irradiation. The photocatalytic degradation and mineralization tests showed that Bi4O5I2 microbars could be efficiently used for the degradation of organic chemical pollutants.