Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia

The economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine...

Cur síos iomlán

Sábháilte in:
Sonraí bibleagrafaíochta
Príomhchruthaitheoir: Ruiz Otondo, Juan (author)
Formáid: article
Teanga:spa
Foilsithe / Cruthaithe: 2021
Ábhair:
Rochtain ar líne:https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
Cur síos
Achoimre:The economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine learning (ML) algorithms on the accuracy of the prediction of Covid-19 cases. The methodology is based on predictive statistics and analysis of ML algorithms. The result of the evidence determines at a comparative level that the ARIMA and RANDOM FOREST algorithms do not have good precision or data fit, so their future forecasts are not fulfilled, on the other hand the PROPHET algorithm behaves regularly, as an intermediate indicator in the comparison of prediction with numbers of cases in real time, within that perspective are the predictive algorithms that have the best test precision and are adjusted to the reality of the daily data of Covid-19 cases for Bolivia; GLMNET AND PROPHET W / XGBOOT ERRORS in the two simulated phases prior to the presentation of this article, therefore it could be concluded that the GLMNET and PROPHET W / XGBOOT ERRORS predictive models are better algorithms to predict Covid-19 case scenarios.