Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia

The economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Ruiz Otondo, Juan (author)
Định dạng: article
Ngôn ngữ:spa
Được phát hành: 2021
Những chủ đề:
Truy cập trực tuyến:https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
_version_ 1838839179060969472
author Ruiz Otondo, Juan
author_facet Ruiz Otondo, Juan
author_role author
collection Revista Cuestiones Económicas
dc.creator.none.fl_str_mv Ruiz Otondo, Juan
dc.date.none.fl_str_mv 2021-11-22
dc.format.none.fl_str_mv application/pdf
dc.identifier.none.fl_str_mv https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339
10.47550/RCE/MEM/31.19
dc.language.none.fl_str_mv spa
dc.publisher.none.fl_str_mv Banco Central del Ecuador
dc.relation.none.fl_str_mv https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339/240
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv Cuestiones Económicas; Vol. 31 Núm. 3 (2021): Edición Especial: Memorias IV Encuentro Internacional de Economía EPN; Autor: Juan Ruiz Otondo
2697-3367
2697-3367
reponame:Revista Cuestiones Económicas
instname:Banco Central del Ecuador
instacron:BCE
dc.subject.none.fl_str_mv Machine Learning
Covid-19
Predicción
dc.title.none.fl_str_mv Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
Algoritmos Machine Learning (ML): Predicción de casos COVID-19 en Bolivia
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículos de Investigación
description The economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine learning (ML) algorithms on the accuracy of the prediction of Covid-19 cases. The methodology is based on predictive statistics and analysis of ML algorithms. The result of the evidence determines at a comparative level that the ARIMA and RANDOM FOREST algorithms do not have good precision or data fit, so their future forecasts are not fulfilled, on the other hand the PROPHET algorithm behaves regularly, as an intermediate indicator in the comparison of prediction with numbers of cases in real time, within that perspective are the predictive algorithms that have the best test precision and are adjusted to the reality of the daily data of Covid-19 cases for Bolivia; GLMNET AND PROPHET W / XGBOOT ERRORS in the two simulated phases prior to the presentation of this article, therefore it could be concluded that the GLMNET and PROPHET W / XGBOOT ERRORS predictive models are better algorithms to predict Covid-19 case scenarios.
eu_rights_str_mv openAccess
format article
id REVCUESTEC_2e62b1da1b14e9cd92c24941b94b14a1
identifier_str_mv 10.47550/RCE/MEM/31.19
instacron_str BCE
institution BCE
instname_str Banco Central del Ecuador
language spa
network_acronym_str REVCUESTEC
network_name_str Revista Cuestiones Económicas
oai_identifier_str oai:estudioseconomicos.bce.fin.ec:article/339
publishDate 2021
publisher.none.fl_str_mv Banco Central del Ecuador
reponame_str Revista Cuestiones Económicas
repository.mail.fl_str_mv
repository.name.fl_str_mv Revista Cuestiones Económicas - Banco Central del Ecuador
repository_id_str
spelling Machine Learning (ML) algorithms: Prediction of COVID-19 cases in BoliviaAlgoritmos Machine Learning (ML): Predicción de casos COVID-19 en BoliviaRuiz Otondo, Juan Machine LearningCovid-19PredicciónThe economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine learning (ML) algorithms on the accuracy of the prediction of Covid-19 cases. The methodology is based on predictive statistics and analysis of ML algorithms. The result of the evidence determines at a comparative level that the ARIMA and RANDOM FOREST algorithms do not have good precision or data fit, so their future forecasts are not fulfilled, on the other hand the PROPHET algorithm behaves regularly, as an intermediate indicator in the comparison of prediction with numbers of cases in real time, within that perspective are the predictive algorithms that have the best test precision and are adjusted to the reality of the daily data of Covid-19 cases for Bolivia; GLMNET AND PROPHET W / XGBOOT ERRORS in the two simulated phases prior to the presentation of this article, therefore it could be concluded that the GLMNET and PROPHET W / XGBOOT ERRORS predictive models are better algorithms to predict Covid-19 case scenarios.El sistema económico - sanitario global atraviesa una incertidumbre, resiliencia por efecto de la pandemia, ante esa adversidad es determinante estimar los comportamientos de escenarios de casos Covid-19, para una toma de decisión estratégica en política pública. El objetivo de este artículo es examinar las implicaciones de algoritmos Machine Learning (ML) en precisión de predicción de casos Covid-19. La metodología se sustenta en la estadística y analítica predictiva de algoritmos ML. El resultado de la evidencia determina a nivel comparativo que los algoritmos ARIMA y RANDOM FOREST no tienen buena precisión ni ajuste de datos, por ende no se cumplen sus pronósticos a futuro, por otra parte el algoritmo PROPHET se comporta de manera regular, como indicador intermedia en la predicción comparando con números de casos a tiempo real, dentro de esa perspectiva los algoritmos predictivos que tienen mejor test de precisión y se ajustan a la realidad de los datos de casos diarios de Covid-19 para Bolivia son; GLMNET Y PROPHET W/XGBOOT ERRORS en las dos fases simulados previos a presentación de este artículo, por la razón anterior se podría concluir que los modelos predictivos GLMNET y PROPHET W/XGBOOT ERRORS son mejores algoritmos para predecir escenarios de casos Covid-19.  Banco Central del Ecuador2021-11-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículos de Investigaciónapplication/pdfhttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/33910.47550/RCE/MEM/31.19Cuestiones Económicas; Vol. 31 Núm. 3 (2021): Edición Especial: Memorias IV Encuentro Internacional de Economía EPN; Autor: Juan Ruiz Otondo2697-33672697-3367reponame:Revista Cuestiones Económicasinstname:Banco Central del Ecuadorinstacron:BCEspahttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339/240info:eu-repo/semantics/openAccess2021-11-26T18:48:56Zoai:estudioseconomicos.bce.fin.ec:article/339Portal de revistashttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCEOrganismo de gobiernowww.bce.fin.echttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/oaiEcuadoropendoar:2021-11-26T18:48:56falsePortal de revistashttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCEOrganismo de gobiernowww.bce.fin.echttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/oaiEcuadoropendoar:2021-11-26T18:48:56Revista Cuestiones Económicas - Banco Central del Ecuadorfalse
spellingShingle Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
Ruiz Otondo, Juan
Machine Learning
Covid-19
Predicción
status_str publishedVersion
title Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
title_full Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
title_fullStr Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
title_full_unstemmed Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
title_short Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
title_sort Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
topic Machine Learning
Covid-19
Predicción
url https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339