Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia
The economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | article |
Ngôn ngữ: | spa |
Được phát hành: |
2021
|
Những chủ đề: | |
Truy cập trực tuyến: | https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
_version_ | 1838839179060969472 |
---|---|
author | Ruiz Otondo, Juan |
author_facet | Ruiz Otondo, Juan |
author_role | author |
collection | Revista Cuestiones Económicas |
dc.creator.none.fl_str_mv | Ruiz Otondo, Juan |
dc.date.none.fl_str_mv | 2021-11-22 |
dc.format.none.fl_str_mv | application/pdf |
dc.identifier.none.fl_str_mv | https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339 10.47550/RCE/MEM/31.19 |
dc.language.none.fl_str_mv | spa |
dc.publisher.none.fl_str_mv | Banco Central del Ecuador |
dc.relation.none.fl_str_mv | https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339/240 |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | Cuestiones Económicas; Vol. 31 Núm. 3 (2021): Edición Especial: Memorias IV Encuentro Internacional de Economía EPN; Autor: Juan Ruiz Otondo 2697-3367 2697-3367 reponame:Revista Cuestiones Económicas instname:Banco Central del Ecuador instacron:BCE |
dc.subject.none.fl_str_mv | Machine Learning Covid-19 Predicción |
dc.title.none.fl_str_mv | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia Algoritmos Machine Learning (ML): Predicción de casos COVID-19 en Bolivia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículos de Investigación |
description | The economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine learning (ML) algorithms on the accuracy of the prediction of Covid-19 cases. The methodology is based on predictive statistics and analysis of ML algorithms. The result of the evidence determines at a comparative level that the ARIMA and RANDOM FOREST algorithms do not have good precision or data fit, so their future forecasts are not fulfilled, on the other hand the PROPHET algorithm behaves regularly, as an intermediate indicator in the comparison of prediction with numbers of cases in real time, within that perspective are the predictive algorithms that have the best test precision and are adjusted to the reality of the daily data of Covid-19 cases for Bolivia; GLMNET AND PROPHET W / XGBOOT ERRORS in the two simulated phases prior to the presentation of this article, therefore it could be concluded that the GLMNET and PROPHET W / XGBOOT ERRORS predictive models are better algorithms to predict Covid-19 case scenarios. |
eu_rights_str_mv | openAccess |
format | article |
id | REVCUESTEC_2e62b1da1b14e9cd92c24941b94b14a1 |
identifier_str_mv | 10.47550/RCE/MEM/31.19 |
instacron_str | BCE |
institution | BCE |
instname_str | Banco Central del Ecuador |
language | spa |
network_acronym_str | REVCUESTEC |
network_name_str | Revista Cuestiones Económicas |
oai_identifier_str | oai:estudioseconomicos.bce.fin.ec:article/339 |
publishDate | 2021 |
publisher.none.fl_str_mv | Banco Central del Ecuador |
reponame_str | Revista Cuestiones Económicas |
repository.mail.fl_str_mv | |
repository.name.fl_str_mv | Revista Cuestiones Económicas - Banco Central del Ecuador |
repository_id_str | |
spelling | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in BoliviaAlgoritmos Machine Learning (ML): Predicción de casos COVID-19 en BoliviaRuiz Otondo, Juan Machine LearningCovid-19PredicciónThe economic system is going through uncertainty, resilience due to the pandemic, in the face of this adversity it is decisive to estimate the behaviors of the Covid-19 case scenarios, for strategic decision-making in public policies. The aim of this article is to examine the implications of machine learning (ML) algorithms on the accuracy of the prediction of Covid-19 cases. The methodology is based on predictive statistics and analysis of ML algorithms. The result of the evidence determines at a comparative level that the ARIMA and RANDOM FOREST algorithms do not have good precision or data fit, so their future forecasts are not fulfilled, on the other hand the PROPHET algorithm behaves regularly, as an intermediate indicator in the comparison of prediction with numbers of cases in real time, within that perspective are the predictive algorithms that have the best test precision and are adjusted to the reality of the daily data of Covid-19 cases for Bolivia; GLMNET AND PROPHET W / XGBOOT ERRORS in the two simulated phases prior to the presentation of this article, therefore it could be concluded that the GLMNET and PROPHET W / XGBOOT ERRORS predictive models are better algorithms to predict Covid-19 case scenarios.El sistema económico - sanitario global atraviesa una incertidumbre, resiliencia por efecto de la pandemia, ante esa adversidad es determinante estimar los comportamientos de escenarios de casos Covid-19, para una toma de decisión estratégica en política pública. El objetivo de este artículo es examinar las implicaciones de algoritmos Machine Learning (ML) en precisión de predicción de casos Covid-19. La metodología se sustenta en la estadística y analítica predictiva de algoritmos ML. El resultado de la evidencia determina a nivel comparativo que los algoritmos ARIMA y RANDOM FOREST no tienen buena precisión ni ajuste de datos, por ende no se cumplen sus pronósticos a futuro, por otra parte el algoritmo PROPHET se comporta de manera regular, como indicador intermedia en la predicción comparando con números de casos a tiempo real, dentro de esa perspectiva los algoritmos predictivos que tienen mejor test de precisión y se ajustan a la realidad de los datos de casos diarios de Covid-19 para Bolivia son; GLMNET Y PROPHET W/XGBOOT ERRORS en las dos fases simulados previos a presentación de este artículo, por la razón anterior se podría concluir que los modelos predictivos GLMNET y PROPHET W/XGBOOT ERRORS son mejores algoritmos para predecir escenarios de casos Covid-19. Banco Central del Ecuador2021-11-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículos de Investigaciónapplication/pdfhttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/33910.47550/RCE/MEM/31.19Cuestiones Económicas; Vol. 31 Núm. 3 (2021): Edición Especial: Memorias IV Encuentro Internacional de Economía EPN; Autor: Juan Ruiz Otondo2697-33672697-3367reponame:Revista Cuestiones Económicasinstname:Banco Central del Ecuadorinstacron:BCEspahttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339/240info:eu-repo/semantics/openAccess2021-11-26T18:48:56Zoai:estudioseconomicos.bce.fin.ec:article/339Portal de revistashttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCEOrganismo de gobiernowww.bce.fin.echttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/oaiEcuadoropendoar:2021-11-26T18:48:56falsePortal de revistashttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCEOrganismo de gobiernowww.bce.fin.echttps://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/oaiEcuadoropendoar:2021-11-26T18:48:56Revista Cuestiones Económicas - Banco Central del Ecuadorfalse |
spellingShingle | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia Ruiz Otondo, Juan Machine Learning Covid-19 Predicción |
status_str | publishedVersion |
title | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia |
title_full | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia |
title_fullStr | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia |
title_full_unstemmed | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia |
title_short | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia |
title_sort | Machine Learning (ML) algorithms: Prediction of COVID-19 cases in Bolivia |
topic | Machine Learning Covid-19 Predicción |
url | https://estudioseconomicos.bce.fin.ec/index.php/RevistaCE/article/view/339 |