Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua

The present article highlights relevant aspects of the development process of the mobile application that incorporates Machine Learning techniques to early detect pests and diseases in staple grain crops such as corn, beans, and sorghum, which are essential for human consumption in Nicaragua. Agile...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Urbina Cienfuegos, Saira María (author)
Beste egile batzuk: Bravo Rivas, Jazcar Josué (author)
Formatua: article
Hizkuntza:spa
Argitaratua: 2025
Gaiak:
Sarrera elektronikoa:https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
_version_ 1840083924307410944
author Urbina Cienfuegos, Saira María
author2 Bravo Rivas, Jazcar Josué
author2_role author
author_facet Urbina Cienfuegos, Saira María
Bravo Rivas, Jazcar Josué
author_role author
collection Revista Ingenio
dc.creator.none.fl_str_mv Urbina Cienfuegos, Saira María
Bravo Rivas, Jazcar Josué
dc.date.none.fl_str_mv 2025-01-03
dc.format.none.fl_str_mv application/pdf
text/html
application/epub+zip
dc.identifier.none.fl_str_mv https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221
10.29166/ingenio.v8i1.7221
dc.language.none.fl_str_mv spa
dc.publisher.none.fl_str_mv Editorial Universitaria - Universidad Central del Ecuador
dc.relation.none.fl_str_mv https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9377
https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9378
https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9399
dc.rights.none.fl_str_mv Copyright (c) 2024 Saira María Urbina Cienfuegos, Jazcar Josué Bravo Rivas
http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv INGENIO; Vol. 8 No. 1 (2025): Specialized Engineering Dissemination; 24-34
INGENIO; Vol. 8 Núm. 1 (2025): Divulgación Especializada en Ingeniería ; 24-34
2697-3243
2588-0829
reponame:Revista Ingenio
instname:Universidad Central del Ecuador
instacron:UCE
dc.subject.none.fl_str_mv machine learning
plagas
enfermedades
cultivos
machine learning
pests
diseases
crops
dc.title.none.fl_str_mv Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
Inteligencia Artificial: Machine Learning, para Detección Temprana de Plagas y Enfermedades de Cultivos Básicos, Nicaragua
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
description The present article highlights relevant aspects of the development process of the mobile application that incorporates Machine Learning techniques to early detect pests and diseases in staple grain crops such as corn, beans, and sorghum, which are essential for human consumption in Nicaragua. Agile development methodology Scrum was used, technologies such as Android Studio, Java programming language, Google Teachable Machine for training the machine learning model, and TensorFlow Lite for incorporating the model into the mobile application were adopted. The results show a Sprint with its user stories, which were turned into functionalities that include the model for image recognition with an accuracy of 95.8% using a dataset of 252 images of healthy and diseased crops. The methodology indicates the organization of programming according to the Model-View-Controller pattern and the metrics used by the model. The conclusions emphasize details of the results obtained in Sprint#1. In the end, challenges to overcome in applying machine learning in the agricultural sector are also mentioned.
eu_rights_str_mv openAccess
format article
id REVINGENIO_75a1d816e1f3dcb24fee061b086d8c5c
identifier_str_mv 10.29166/ingenio.v8i1.7221
instacron_str UCE
institution UCE
instname_str Universidad Central del Ecuador
language spa
network_acronym_str REVINGENIO
network_name_str Revista Ingenio
oai_identifier_str oai:revistadigital.uce.edu.ec:article/7221
publishDate 2025
publisher.none.fl_str_mv Editorial Universitaria - Universidad Central del Ecuador
reponame_str Revista Ingenio
repository.mail.fl_str_mv *
repository.name.fl_str_mv Revista Ingenio - Universidad Central del Ecuador
repository_id_str 0
rights_invalid_str_mv Copyright (c) 2024 Saira María Urbina Cienfuegos, Jazcar Josué Bravo Rivas
http://creativecommons.org/licenses/by-nc-nd/4.0
spelling Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, NicaraguaInteligencia Artificial: Machine Learning, para Detección Temprana de Plagas y Enfermedades de Cultivos Básicos, NicaraguaUrbina Cienfuegos, Saira MaríaBravo Rivas, Jazcar Josuémachine learningplagasenfermedadescultivosmachine learningpestsdiseasescropsThe present article highlights relevant aspects of the development process of the mobile application that incorporates Machine Learning techniques to early detect pests and diseases in staple grain crops such as corn, beans, and sorghum, which are essential for human consumption in Nicaragua. Agile development methodology Scrum was used, technologies such as Android Studio, Java programming language, Google Teachable Machine for training the machine learning model, and TensorFlow Lite for incorporating the model into the mobile application were adopted. The results show a Sprint with its user stories, which were turned into functionalities that include the model for image recognition with an accuracy of 95.8% using a dataset of 252 images of healthy and diseased crops. The methodology indicates the organization of programming according to the Model-View-Controller pattern and the metrics used by the model. The conclusions emphasize details of the results obtained in Sprint#1. In the end, challenges to overcome in applying machine learning in the agricultural sector are also mentioned.El presente artículo, muestra aspectos relevantes del proceso de desarrollo de la aplicación móvil que incorpora técnicas de Machine Learning para detectar de forma temprana plagas y enfermedades en cultivos de granos básicos como maíz, frijol y sorgo, estos son indispensables para el consumo humano en Nicaragua. Se utilizó metodología de desarrollo ágil Scrum, se adoptaron tecnologías como Android Studio, lenguaje de programación Java, Google Teachable Machine para entrenamiento del modelo de aprendizaje automático y TensorFlow Lite para incorporar modelo en la aplicación móvil. Los resultados muestran un Sprint con sus historias de usuarios, estas se convirtieron en funcionalidades que incluyen el modelo para el reconocimiento de imágenes con precisión de 95.8% utilizando un conjunto de datos de 252 imágenes de cultivos sanos y enfermos. La metodología indica organización de la programación según patrón Modelo – Vista – Controlador y métricas utilizadas por el modelo. Las conclusiones hacen énfasis en detalles de los resultados obtenidos en Sprint#1. Al final, también se mencionan retos a superar al aplicar aprendizaje automático en el sector agrícola.Editorial Universitaria - Universidad Central del Ecuador2025-01-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/epub+ziphttps://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/722110.29166/ingenio.v8i1.7221INGENIO; Vol. 8 No. 1 (2025): Specialized Engineering Dissemination; 24-34INGENIO; Vol. 8 Núm. 1 (2025): Divulgación Especializada en Ingeniería ; 24-342697-32432588-0829reponame:Revista Ingenioinstname:Universidad Central del Ecuadorinstacron:UCEspahttps://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9377https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9378https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9399Copyright (c) 2024 Saira María Urbina Cienfuegos, Jazcar Josué Bravo Rivashttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccess2025-07-18T16:50:41Zoai:revistadigital.uce.edu.ec:article/7221Portal de revistashttps://revistadigital.uce.edu.ec/Universidad públicahttps://uce.edu.ec/**Ecuador*2697-32432588-0829opendoar:02025-07-18T16:50:41Revista Ingenio - Universidad Central del Ecuadorfalse
spellingShingle Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
Urbina Cienfuegos, Saira María
machine learning
plagas
enfermedades
cultivos
machine learning
pests
diseases
crops
status_str publishedVersion
title Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
title_full Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
title_fullStr Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
title_full_unstemmed Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
title_short Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
title_sort Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
topic machine learning
plagas
enfermedades
cultivos
machine learning
pests
diseases
crops
url https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221