Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua
The present article highlights relevant aspects of the development process of the mobile application that incorporates Machine Learning techniques to early detect pests and diseases in staple grain crops such as corn, beans, and sorghum, which are essential for human consumption in Nicaragua. Agile...
Gorde:
Egile nagusia: | |
---|---|
Beste egile batzuk: | |
Formatua: | article |
Hizkuntza: | spa |
Argitaratua: |
2025
|
Gaiak: | |
Sarrera elektronikoa: | https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221 |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
_version_ | 1840083924307410944 |
---|---|
author | Urbina Cienfuegos, Saira María |
author2 | Bravo Rivas, Jazcar Josué |
author2_role | author |
author_facet | Urbina Cienfuegos, Saira María Bravo Rivas, Jazcar Josué |
author_role | author |
collection | Revista Ingenio |
dc.creator.none.fl_str_mv | Urbina Cienfuegos, Saira María Bravo Rivas, Jazcar Josué |
dc.date.none.fl_str_mv | 2025-01-03 |
dc.format.none.fl_str_mv | application/pdf text/html application/epub+zip |
dc.identifier.none.fl_str_mv | https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221 10.29166/ingenio.v8i1.7221 |
dc.language.none.fl_str_mv | spa |
dc.publisher.none.fl_str_mv | Editorial Universitaria - Universidad Central del Ecuador |
dc.relation.none.fl_str_mv | https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9377 https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9378 https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9399 |
dc.rights.none.fl_str_mv | Copyright (c) 2024 Saira María Urbina Cienfuegos, Jazcar Josué Bravo Rivas http://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | INGENIO; Vol. 8 No. 1 (2025): Specialized Engineering Dissemination; 24-34 INGENIO; Vol. 8 Núm. 1 (2025): Divulgación Especializada en Ingeniería ; 24-34 2697-3243 2588-0829 reponame:Revista Ingenio instname:Universidad Central del Ecuador instacron:UCE |
dc.subject.none.fl_str_mv | machine learning plagas enfermedades cultivos machine learning pests diseases crops |
dc.title.none.fl_str_mv | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua Inteligencia Artificial: Machine Learning, para Detección Temprana de Plagas y Enfermedades de Cultivos Básicos, Nicaragua |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
description | The present article highlights relevant aspects of the development process of the mobile application that incorporates Machine Learning techniques to early detect pests and diseases in staple grain crops such as corn, beans, and sorghum, which are essential for human consumption in Nicaragua. Agile development methodology Scrum was used, technologies such as Android Studio, Java programming language, Google Teachable Machine for training the machine learning model, and TensorFlow Lite for incorporating the model into the mobile application were adopted. The results show a Sprint with its user stories, which were turned into functionalities that include the model for image recognition with an accuracy of 95.8% using a dataset of 252 images of healthy and diseased crops. The methodology indicates the organization of programming according to the Model-View-Controller pattern and the metrics used by the model. The conclusions emphasize details of the results obtained in Sprint#1. In the end, challenges to overcome in applying machine learning in the agricultural sector are also mentioned. |
eu_rights_str_mv | openAccess |
format | article |
id | REVINGENIO_75a1d816e1f3dcb24fee061b086d8c5c |
identifier_str_mv | 10.29166/ingenio.v8i1.7221 |
instacron_str | UCE |
institution | UCE |
instname_str | Universidad Central del Ecuador |
language | spa |
network_acronym_str | REVINGENIO |
network_name_str | Revista Ingenio |
oai_identifier_str | oai:revistadigital.uce.edu.ec:article/7221 |
publishDate | 2025 |
publisher.none.fl_str_mv | Editorial Universitaria - Universidad Central del Ecuador |
reponame_str | Revista Ingenio |
repository.mail.fl_str_mv | * |
repository.name.fl_str_mv | Revista Ingenio - Universidad Central del Ecuador |
repository_id_str | 0 |
rights_invalid_str_mv | Copyright (c) 2024 Saira María Urbina Cienfuegos, Jazcar Josué Bravo Rivas http://creativecommons.org/licenses/by-nc-nd/4.0 |
spelling | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, NicaraguaInteligencia Artificial: Machine Learning, para Detección Temprana de Plagas y Enfermedades de Cultivos Básicos, NicaraguaUrbina Cienfuegos, Saira MaríaBravo Rivas, Jazcar Josuémachine learningplagasenfermedadescultivosmachine learningpestsdiseasescropsThe present article highlights relevant aspects of the development process of the mobile application that incorporates Machine Learning techniques to early detect pests and diseases in staple grain crops such as corn, beans, and sorghum, which are essential for human consumption in Nicaragua. Agile development methodology Scrum was used, technologies such as Android Studio, Java programming language, Google Teachable Machine for training the machine learning model, and TensorFlow Lite for incorporating the model into the mobile application were adopted. The results show a Sprint with its user stories, which were turned into functionalities that include the model for image recognition with an accuracy of 95.8% using a dataset of 252 images of healthy and diseased crops. The methodology indicates the organization of programming according to the Model-View-Controller pattern and the metrics used by the model. The conclusions emphasize details of the results obtained in Sprint#1. In the end, challenges to overcome in applying machine learning in the agricultural sector are also mentioned.El presente artículo, muestra aspectos relevantes del proceso de desarrollo de la aplicación móvil que incorpora técnicas de Machine Learning para detectar de forma temprana plagas y enfermedades en cultivos de granos básicos como maíz, frijol y sorgo, estos son indispensables para el consumo humano en Nicaragua. Se utilizó metodología de desarrollo ágil Scrum, se adoptaron tecnologías como Android Studio, lenguaje de programación Java, Google Teachable Machine para entrenamiento del modelo de aprendizaje automático y TensorFlow Lite para incorporar modelo en la aplicación móvil. Los resultados muestran un Sprint con sus historias de usuarios, estas se convirtieron en funcionalidades que incluyen el modelo para el reconocimiento de imágenes con precisión de 95.8% utilizando un conjunto de datos de 252 imágenes de cultivos sanos y enfermos. La metodología indica organización de la programación según patrón Modelo – Vista – Controlador y métricas utilizadas por el modelo. Las conclusiones hacen énfasis en detalles de los resultados obtenidos en Sprint#1. Al final, también se mencionan retos a superar al aplicar aprendizaje automático en el sector agrícola.Editorial Universitaria - Universidad Central del Ecuador2025-01-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/epub+ziphttps://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/722110.29166/ingenio.v8i1.7221INGENIO; Vol. 8 No. 1 (2025): Specialized Engineering Dissemination; 24-34INGENIO; Vol. 8 Núm. 1 (2025): Divulgación Especializada en Ingeniería ; 24-342697-32432588-0829reponame:Revista Ingenioinstname:Universidad Central del Ecuadorinstacron:UCEspahttps://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9377https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9378https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221/9399Copyright (c) 2024 Saira María Urbina Cienfuegos, Jazcar Josué Bravo Rivashttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccess2025-07-18T16:50:41Zoai:revistadigital.uce.edu.ec:article/7221Portal de revistashttps://revistadigital.uce.edu.ec/Universidad públicahttps://uce.edu.ec/**Ecuador*2697-32432588-0829opendoar:02025-07-18T16:50:41Revista Ingenio - Universidad Central del Ecuadorfalse |
spellingShingle | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua Urbina Cienfuegos, Saira María machine learning plagas enfermedades cultivos machine learning pests diseases crops |
status_str | publishedVersion |
title | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua |
title_full | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua |
title_fullStr | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua |
title_full_unstemmed | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua |
title_short | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua |
title_sort | Artificial Intelligence: Machine Learning for Early Detection of Pests and Diseases in Basic Crops, Nicaragua |
topic | machine learning plagas enfermedades cultivos machine learning pests diseases crops |
url | https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/7221 |