Estudio metodológico de las herramientas tecnológicas actuales para detectar y reconocer DeepFakes, abordando la creciente amenaza de la manipulación de contenido multimedia generado por inteligencia artificial.
Este trabajo de titulación busca abordar la creciente amenaza de los DeepFakes en la era digital, donde la manipulación de contenido multimedia generado por inteligencia artificial puede dificultar la distinción entre información real y falsa. El objetivo general de esta investigación ha sido identi...
Spremljeno u:
Glavni autor: | |
---|---|
Format: | bachelorThesis |
Jezik: | spa |
Izdano: |
2023
|
Teme: | |
Online pristup: | http://repositorio.ucsg.edu.ec/handle/3317/22086 |
Oznake: |
Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
|
Sažetak: | Este trabajo de titulación busca abordar la creciente amenaza de los DeepFakes en la era digital, donde la manipulación de contenido multimedia generado por inteligencia artificial puede dificultar la distinción entre información real y falsa. El objetivo general de esta investigación ha sido identificar, analizar y evaluar las herramientas tecnológicas utilizadas para detectar y reconocer DeepFakes, con el propósito de enfrentar este desafío de manera efectiva. Para lograrlo, se ha diseñado una ruta de trabajo que proporciona claridad en los procesos y pasos a seguir, permitiendo así la elaboración de una metodología sólida y bien fundamentada. La elección de la métrica AUC como criterio de evaluación ha permitido medir de manera global la capacidad discriminativa de las herramientas, asegurando una comparación objetiva y justa. Los resultados obtenidos de la comparación y evaluación de cinco herramientas de detección de DeepFakes han revelado que Meso4 y Capsule se destacaron con los puntajes más altos en diferentes estudios, sobresaliendo especialmente en el conjunto de datos FaceForensics++. Además, se han identificado áreas de mejora y desafíos en la detección de DeepFakes, resaltando la importancia de considerar diferentes escenarios de generación de videos falsificados y la adaptabilidad de las herramientas a futuras técnicas de manipulación. Este estudio aporta una valiosa contribución al campo de la detección de DeepFakes, ofreciendo una base sólida para futuras investigaciones en esta área. Los resultados y conclusiones obtenidos serán de gran interés para personas interesadas en la detección y mitigación de DeepFakes. La implementación de estas herramientas de detección y la mejora continua de las mismas permitirá preservar la integridad y veracidad de los contenidos digitales en un contexto de rápida evolución tecnológica. De esta manera, se espera hacer frente a la amenaza de los DeepFakes y promover la confianza en la información en la sociedad actual. |
---|