Diseño e implementación de un sistema MIMO Fast OFDM en módulos NI-USRP

The development of new applications requires wireless transmission technologies that provide high data density at high speeds, to be applied in mobile telephony, digital television, and others. In a real wireless environment the medium of propagation is hostile, it means, the signal is affected by t...

Full description

Saved in:
Bibliographic Details
Main Author: Gamboa Córdova, Richard Gerardo (author)
Format: bachelorThesis
Language:spa
Published: 2017
Subjects:
Online Access:http://dspace.ups.edu.ec/handle/123456789/14024
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of new applications requires wireless transmission technologies that provide high data density at high speeds, to be applied in mobile telephony, digital television, and others. In a real wireless environment the medium of propagation is hostile, it means, the signal is affected by the fading and interference of other users, in addition, the electromagnetic spectrum must be used efficiently as it is a limited and controlled resource. Due to this, the MIMO 2x2-Fast-OFDM system has been proposed, which manages to use the electromagnetic spectrum more efficiently, increasing the data transmission capacity, providing a better performance against the problems of the wireless channel. Through the MatLab software, the programming of the transmitter and receiver of the MIMO 2x2 Fast-OFDM system was developed in the USRP modules using Labview. Through the MIMO zero-force technique and the channel estimation which is achieved by the least squares method, the DCT discrete cosine transform is used to obtain the Fast-OFDM double-sideband signal and thus perform the respective performance tests for different digital modulations in a real wireless transmission environment. The behavior of BER with respect to distance was analyzed, in which it was observed that the system reaches its best performance with a SNR of 25.53 [dB], with BPSK being the best-performing digital modulation with a BER = 6.5x10−5.