Artificial Intelligence based detection of manipulated audio for political forensics

The proliferation of deepfake audio poses significant challenges in political forensics, as it can be used to spread misinformation and manipulate public opinion. This thesis addresses these challenges by developing and evaluating AI-based models to detect manipulated audio. A systematic review of t...

Fuld beskrivelse

Saved in:
Bibliografiske detaljer
Hovedforfatter: Mendoza Núñez, Patricio Joshue (author)
Format: bachelorThesis
Sprog:eng
Udgivet: 2024
Fag:
Online adgang:http://repositorio.yachaytech.edu.ec/handle/123456789/849
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
_version_ 1839734183780417536
author Mendoza Núñez, Patricio Joshue
author_facet Mendoza Núñez, Patricio Joshue
author_role author
collection Repositorio Universidad Yachay Tech
dc.contributor.none.fl_str_mv Astudillo León, Juan Pablo
Moreno Guaicha, Jefferson Alexander
dc.creator.none.fl_str_mv Mendoza Núñez, Patricio Joshue
dc.date.none.fl_str_mv 2024-11-12T19:40:52Z
2024-11-12T19:40:52Z
2024-11
dc.identifier.none.fl_str_mv http://repositorio.yachaytech.edu.ec/handle/123456789/849
dc.language.none.fl_str_mv eng
dc.publisher.none.fl_str_mv Universidad de Investigación de Tecnología Experimental Yachay
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:Repositorio Universidad Yachay Tech
instname:Universidad Yachay Tech
instacron:Yachay
dc.subject.none.fl_str_mv Inteligencia Artificial
Redes neuronales
Ética
Artificial Intelligence
Neural networks
Ethics
dc.title.none.fl_str_mv Artificial Intelligence based detection of manipulated audio for political forensics
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bachelorThesis
description The proliferation of deepfake audio poses significant challenges in political forensics, as it can be used to spread misinformation and manipulate public opinion. This thesis addresses these challenges by developing and evaluating AI-based models to detect manipulated audio. A systematic review of the literature on advanced techniques for detecting manipulated multimedia content was conducted, highlighting the difficulties posed by synthesis and editing techniques. Based on this analysis, a dataset of real and artificially fabricated political speeches was compiled, utilizing natural language processing (NLP) methods to extract feature vectors. Two neural network architectures were evaluated: Convolutional Neural Networks (CNN) and Transformers. The CNN model consists of a 7-layer network to process audio waveforms, while the Transformer model employs 12 or 24 Transformer blocks to capture global dependencies and contextual information. The study also analyzes acoustic features that distinguish real from fake audio, including spectrograms, decibel levels, and feature representations such as MFCC and Mel-Spectrogram. The results indicate that fake audio tends to be louder and less variable than real audio, and the feature representations confirm the synthetic nature of fake audio. The conclusions highlight the effectiveness of Transformer models in detecting manipulated audio, outperforming CNNs in accuracy and generalization capability, suggesting a promising path for future research in this area.
eu_rights_str_mv openAccess
format bachelorThesis
id Yachay_1c7f19d867a86d251b9d6dac65d415e2
instacron_str Yachay
institution Yachay
instname_str Universidad Yachay Tech
language eng
network_acronym_str Yachay
network_name_str Repositorio Universidad Yachay Tech
oai_identifier_str oai:repositorio.yachaytech.edu.ec:123456789/849
publishDate 2024
publisher.none.fl_str_mv Universidad de Investigación de Tecnología Experimental Yachay
reponame_str Repositorio Universidad Yachay Tech
repository.mail.fl_str_mv .
repository.name.fl_str_mv Repositorio Universidad Yachay Tech - Universidad Yachay Tech
repository_id_str 10284
spelling Artificial Intelligence based detection of manipulated audio for political forensicsMendoza Núñez, Patricio JoshueInteligencia ArtificialRedes neuronalesÉticaArtificial IntelligenceNeural networksEthicsThe proliferation of deepfake audio poses significant challenges in political forensics, as it can be used to spread misinformation and manipulate public opinion. This thesis addresses these challenges by developing and evaluating AI-based models to detect manipulated audio. A systematic review of the literature on advanced techniques for detecting manipulated multimedia content was conducted, highlighting the difficulties posed by synthesis and editing techniques. Based on this analysis, a dataset of real and artificially fabricated political speeches was compiled, utilizing natural language processing (NLP) methods to extract feature vectors. Two neural network architectures were evaluated: Convolutional Neural Networks (CNN) and Transformers. The CNN model consists of a 7-layer network to process audio waveforms, while the Transformer model employs 12 or 24 Transformer blocks to capture global dependencies and contextual information. The study also analyzes acoustic features that distinguish real from fake audio, including spectrograms, decibel levels, and feature representations such as MFCC and Mel-Spectrogram. The results indicate that fake audio tends to be louder and less variable than real audio, and the feature representations confirm the synthetic nature of fake audio. The conclusions highlight the effectiveness of Transformer models in detecting manipulated audio, outperforming CNNs in accuracy and generalization capability, suggesting a promising path for future research in this area.La proliferación de audio deepfake plantea desafíos significativos en la pericia política, ya que puede utilizarse para difundir desinformación y manipular la opinión pública. Esta tesis aborda estos desafíos desarrollando y evaluando modelos basados en IA para detectar audio manipulado. Se realizó una revisión sistemática de la literatura sobre técnicas avanzadas en la detección de contenido multimedia manipulado, destacando las dificultades que presentan las técnicas de síntesis y edición. A partir de este análisis, se compiló un conjunto de datos de discursos políticos reales y fabricados artificialmente, utilizando métodos de procesamiento de lenguaje natural (NLP) para extraer vectores de características. Se evaluaron dos arquitecturas de redes neuronales: Redes Neuronales Convolucionales (CNN) y Transformers. El modelo CNN consta de una red de 7 capas para procesar formas de onda de audio, mientras que el modelo Transformer utiliza 12 o 24 bloques de Transformer para capturar dependencias globales e información contextual. El estudio también analiza características acústicas que distinguen el audio real del falso, incluyendo espectrogramas, niveles de decibelios y representaciones de características como MFCC y Mel-Espectrograma. Los resultados indican que el audio falso tiende a ser más fuerte y menos variable que el audio real, y las características confirman la naturaleza sintética del audio falso. Las conclusiones destacan la efectividad de los modelos Transformers en la detección de audio manipulado, superando a las CNN en precisión y capacidad de generalización, sugiriendo un camino prometedor para futuras investigaciones en esta área.Ingeniero/a en Tecnologías de la InformaciónUniversidad de Investigación de Tecnología Experimental YachayAstudillo León, Juan PabloMoreno Guaicha, Jefferson Alexander2024-11-12T19:40:52Z2024-11-12T19:40:52Z2024-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://repositorio.yachaytech.edu.ec/handle/123456789/849enginfo:eu-repo/semantics/openAccessreponame:Repositorio Universidad Yachay Techinstname:Universidad Yachay Techinstacron:Yachay2024-11-12T20:10:56Zoai:repositorio.yachaytech.edu.ec:123456789/849Institucionalhttps://repositorio.yachaytech.edu.ec/Universidad públicahttps://www.yachaytech.edu.ec/https://repositorio.yachaytech.edu.ec/oaiEcuador...opendoar:102842024-11-12T20:10:56falseInstitucionalhttps://repositorio.yachaytech.edu.ec/Universidad públicahttps://www.yachaytech.edu.ec/https://repositorio.yachaytech.edu.ec/oai.Ecuador...opendoar:102842024-11-12T20:10:56Repositorio Universidad Yachay Tech - Universidad Yachay Techfalse
spellingShingle Artificial Intelligence based detection of manipulated audio for political forensics
Mendoza Núñez, Patricio Joshue
Inteligencia Artificial
Redes neuronales
Ética
Artificial Intelligence
Neural networks
Ethics
status_str publishedVersion
title Artificial Intelligence based detection of manipulated audio for political forensics
title_full Artificial Intelligence based detection of manipulated audio for political forensics
title_fullStr Artificial Intelligence based detection of manipulated audio for political forensics
title_full_unstemmed Artificial Intelligence based detection of manipulated audio for political forensics
title_short Artificial Intelligence based detection of manipulated audio for political forensics
title_sort Artificial Intelligence based detection of manipulated audio for political forensics
topic Inteligencia Artificial
Redes neuronales
Ética
Artificial Intelligence
Neural networks
Ethics
url http://repositorio.yachaytech.edu.ec/handle/123456789/849