Activity pattern generation using machine learning techniques for transport demand models

Activity pattern generation is an essential component in activity-based demand modeling systems, which are fundamental for urban planning and efficient management of transportation systems. Traditionally, this generation has been performed using conventional techniques; however, with the advancement...

Повний опис

Збережено в:
Бібліографічні деталі
Автор: Ajala Ramos, Santiago Alexander (author)
Формат: bachelorThesis
Мова:eng
Опубліковано: 2024
Предмети:
Онлайн доступ:http://repositorio.yachaytech.edu.ec/handle/123456789/851
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
_version_ 1840070386779160576
author Ajala Ramos, Santiago Alexander
author_facet Ajala Ramos, Santiago Alexander
author_role author
collection Repositorio Universidad Yachay Tech
dc.contributor.none.fl_str_mv Armas Andrade, Tito Rolando
Morales Navarrete, Diego Fabián
dc.creator.none.fl_str_mv Ajala Ramos, Santiago Alexander
dc.date.none.fl_str_mv 2024-11-13T15:34:01Z
2024-11-13T15:34:01Z
2024-11
dc.format.none.fl_str_mv application/pdf
dc.identifier.none.fl_str_mv http://repositorio.yachaytech.edu.ec/handle/123456789/851
dc.language.none.fl_str_mv eng
dc.publisher.none.fl_str_mv Universidad de Investigación de Tecnología Experimental Yachay
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:Repositorio Universidad Yachay Tech
instname:Universidad Yachay Tech
instacron:Yachay
dc.subject.none.fl_str_mv Patrones de actividad
Aprendizaje automático
Redes neuronales artificiales
Activity pattern
Machine learning
Artificial neural network
dc.title.none.fl_str_mv Activity pattern generation using machine learning techniques for transport demand models
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bachelorThesis
description Activity pattern generation is an essential component in activity-based demand modeling systems, which are fundamental for urban planning and efficient management of transportation systems. Traditionally, this generation has been performed using conventional techniques; however, with the advancement of technology, machine learning techniques have been increasingly used for tasks such as transportation mode choice and traffic flow prediction. This study focuses on the application of machine learning techniques for the generation of activity patterns for transportation demand models. Four classification tasks will be performed: means of transportation, reason for travel, destination and start time of travel. For these tasks, a dataset of the city of Cuenca belonging to Ecuador of approximately 3000 records had to be prepared, filtered and adjusted. Three machine learning models were used: Random Forest, Decision Tree and Artificial Neural Networks, and their results were analyzed to choose the best one for each classification task. The results show that the best model for the four classification tasks was the Random Forest, in conjunction with the Grid Search Cross Validation hyperparameter fitting technique. Finally, to give utility to the best models, a dataset was built for a simulation using the MATSim tool, achieving favorable results.
eu_rights_str_mv openAccess
format bachelorThesis
id Yachay_c86b9cfad18d39c78ea0ef5b38298ccd
instacron_str Yachay
institution Yachay
instname_str Universidad Yachay Tech
language eng
network_acronym_str Yachay
network_name_str Repositorio Universidad Yachay Tech
oai_identifier_str oai:repositorio.yachaytech.edu.ec:123456789/851
publishDate 2024
publisher.none.fl_str_mv Universidad de Investigación de Tecnología Experimental Yachay
reponame_str Repositorio Universidad Yachay Tech
repository.mail.fl_str_mv .
repository.name.fl_str_mv Repositorio Universidad Yachay Tech - Universidad Yachay Tech
repository_id_str 10284
spelling Activity pattern generation using machine learning techniques for transport demand modelsAjala Ramos, Santiago AlexanderPatrones de actividadAprendizaje automáticoRedes neuronales artificialesActivity patternMachine learningArtificial neural networkActivity pattern generation is an essential component in activity-based demand modeling systems, which are fundamental for urban planning and efficient management of transportation systems. Traditionally, this generation has been performed using conventional techniques; however, with the advancement of technology, machine learning techniques have been increasingly used for tasks such as transportation mode choice and traffic flow prediction. This study focuses on the application of machine learning techniques for the generation of activity patterns for transportation demand models. Four classification tasks will be performed: means of transportation, reason for travel, destination and start time of travel. For these tasks, a dataset of the city of Cuenca belonging to Ecuador of approximately 3000 records had to be prepared, filtered and adjusted. Three machine learning models were used: Random Forest, Decision Tree and Artificial Neural Networks, and their results were analyzed to choose the best one for each classification task. The results show that the best model for the four classification tasks was the Random Forest, in conjunction with the Grid Search Cross Validation hyperparameter fitting technique. Finally, to give utility to the best models, a dataset was built for a simulation using the MATSim tool, achieving favorable results.La generación de patrones de actividad es un componente esencial en los sistemas de modelización de la demanda basados en la actividad, fundamentales para la planificación urbana y la gestión eficiente de los sistemas de transporte. Tradicionalmente, esta generación se ha realizado mediante técnicas convencionales; sin embargo, con el avance de la tecnología, las técnicas de aprendizaje automático se han utilizado cada vez más para tareas como la elección del medio de transporte y la predicción del flujo de tráfico. Este estudio se enfoca en la aplicación de técnicas de aprendizaje automático para la generación de patrones de actividad para modelos de demanda de transporte. Se realizarán cuatro tareas de clasificación: medio de transporte, motivo de desplazamiento, destino y hora de inicio del desplazamiento. Para dichas tareas, se cuenta con un dataset de la ciudad de Cuenca perteneciente a Ecuador de aproximadamente 3000 registros, el cual tuvo que ser preparado, filtrado y ajustado. Se utilizaron tres modelos de aprendizaje automático: Bosques Aleatorios, Arboles de Decisión y Redes Neuronales Artificiales, y se analizaron ´ sus resultados para escoger el mejor para cada tarea de clasificación. Los resultados muestran que el mejor modelo para las cuatro tareas de clasificación fue el Bosque Aleatorio, en conjunto con la técnica de ajuste de hiperparámetros Búsqueda en Cuadrícula con Validación Cruzada. Finalmente, para dar utilidad a los mejores modelos, se construyó un dataset para una simulación utilizando la herramienta MATSim, logrando resultados favorables.Ingeniero/a en Tecnologías de la InformaciónUniversidad de Investigación de Tecnología Experimental YachayArmas Andrade, Tito RolandoMorales Navarrete, Diego Fabián2024-11-13T15:34:01Z2024-11-13T15:34:01Z2024-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://repositorio.yachaytech.edu.ec/handle/123456789/851enginfo:eu-repo/semantics/openAccessreponame:Repositorio Universidad Yachay Techinstname:Universidad Yachay Techinstacron:Yachay2025-07-08T17:48:49Zoai:repositorio.yachaytech.edu.ec:123456789/851Institucionalhttps://repositorio.yachaytech.edu.ec/Universidad públicahttps://www.yachaytech.edu.ec/https://repositorio.yachaytech.edu.ec/oaiEcuador...opendoar:102842025-07-08T17:48:49falseInstitucionalhttps://repositorio.yachaytech.edu.ec/Universidad públicahttps://www.yachaytech.edu.ec/https://repositorio.yachaytech.edu.ec/oai.Ecuador...opendoar:102842025-07-08T17:48:49Repositorio Universidad Yachay Tech - Universidad Yachay Techfalse
spellingShingle Activity pattern generation using machine learning techniques for transport demand models
Ajala Ramos, Santiago Alexander
Patrones de actividad
Aprendizaje automático
Redes neuronales artificiales
Activity pattern
Machine learning
Artificial neural network
status_str publishedVersion
title Activity pattern generation using machine learning techniques for transport demand models
title_full Activity pattern generation using machine learning techniques for transport demand models
title_fullStr Activity pattern generation using machine learning techniques for transport demand models
title_full_unstemmed Activity pattern generation using machine learning techniques for transport demand models
title_short Activity pattern generation using machine learning techniques for transport demand models
title_sort Activity pattern generation using machine learning techniques for transport demand models
topic Patrones de actividad
Aprendizaje automático
Redes neuronales artificiales
Activity pattern
Machine learning
Artificial neural network
url http://repositorio.yachaytech.edu.ec/handle/123456789/851