Module-oriented automatic differentiation in nonlinear control

In this paper, a module-oriented automatic differentiation (MAD) approach is presented based on traditional automatic differentiation algorithms. This approach can well exploit the sparsity of the model by partitioning it into a series of sequential modules and choosing the best differentiation algo...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Li, Jin (author)
Beste egile batzuk: Tan, Yuejin (author), Liao, Liangcai (author)
Formatua: article
Hizkuntza:eng
Argitaratua: 2007
Gaiak:
Sarrera elektronikoa:http://bibdigital.epn.edu.ec/handle/15000/9309
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:In this paper, a module-oriented automatic differentiation (MAD) approach is presented based on traditional automatic differentiation algorithms. This approach can well exploit the sparsity of the model by partitioning it into a series of sequential modules and choosing the best differentiation algorithm for each module accordingly. Numerical results show that for nonlinear system, module-oriented automatic differentiation can calculate the Lie derivatives and Jacobians efficiently.