Module-oriented automatic differentiation in nonlinear control

In this paper, a module-oriented automatic differentiation (MAD) approach is presented based on traditional automatic differentiation algorithms. This approach can well exploit the sparsity of the model by partitioning it into a series of sequential modules and choosing the best differentiation algo...

Полное описание

Сохранить в:
Библиографические подробности
Главный автор: Li, Jin (author)
Другие авторы: Tan, Yuejin (author), Liao, Liangcai (author)
Формат: article
Язык:eng
Опубликовано: 2007
Предметы:
Online-ссылка:http://bibdigital.epn.edu.ec/handle/15000/9309
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Итог:In this paper, a module-oriented automatic differentiation (MAD) approach is presented based on traditional automatic differentiation algorithms. This approach can well exploit the sparsity of the model by partitioning it into a series of sequential modules and choosing the best differentiation algorithm for each module accordingly. Numerical results show that for nonlinear system, module-oriented automatic differentiation can calculate the Lie derivatives and Jacobians efficiently.