On some time marching schemes for the stabilized finite element approximation of the mixed wave equation

In this paper we analyze time marching schemes for the wave equation in mixed form. The problem is discretized in space using stabilized finite elements. On the one hand, stability and convergence analyses of the fully discrete numerical schemes are presented using different time integration schemes...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Espinoza, Héctor (author)
Beste egile batzuk: Codina, Ramón (author), Badia, Santiago (author)
Formatua: article
Hizkuntza:eng
Argitaratua: 2015
Gaiak:
Sarrera elektronikoa:http://www.dspace.espol.edu.ec/xmlui/handle/123456789/29650
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:In this paper we analyze time marching schemes for the wave equation in mixed form. The problem is discretized in space using stabilized finite elements. On the one hand, stability and convergence analyses of the fully discrete numerical schemes are presented using different time integration schemes and appropriate functional settings. On the other hand, we use Fourier techniques (also known as von Neumann analysis) in order to analyze stability, dispersion and dissipation. Numerical convergence tests are presented for various time integration schemes, polynomial interpolations (for the spatial discretization), stabilization methods, and variational forms. To analyze the behavior of the different schemes considered, a 1D wave propagation problem is solved.