Identificación de anomalías en el tráfico de red utilizando algoritmos de aprendizaje automático. Caso de estudio: CENAIM-ESPOL.

El estudio "Identificación de anomalías en el tráfico de red utilizando algoritmos de aprendizaje automático. Caso de estudio: CENAIM-ESPOL" trata de recopilar y analizar el tráfico de red generado, en periodos definidos, en el switch principal de la institución, para prevenir la explotaci...

全面介绍

Saved in:
书目详细资料
主要作者: Chóez Baque, Francisco Alexis (author)
格式: masterThesis
语言:spa
出版: 2025
主题:
在线阅读:https://repositorio.upse.edu.ec/handle/46000/13090
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:El estudio "Identificación de anomalías en el tráfico de red utilizando algoritmos de aprendizaje automático. Caso de estudio: CENAIM-ESPOL" trata de recopilar y analizar el tráfico de red generado, en periodos definidos, en el switch principal de la institución, para prevenir la explotación de vulnerabilidades mediante el entrenamiento de modelos con algoritmos de aprendizaje automático. Se utilizaron algoritmos supervisados y no supervisados, para identificar patrones anómalos. Según los resultados obtenidos la combinación K-Means y SVM fue la mejor para la detección de anomalías. Esto sugiere que su aplicación podría ser muy útil para mejorar la seguridad en la red. Además, al integrar la API de Virus Total, se validó si las anomalías detectadas eran realmente amenazas, lo que permitió tomar decisiones fundamentadas sobre los potenciales riesgos. Se concluye que aplicar técnicas de Machine Learning mejora la capacidad de identificación de amenazas en el tráfico de red del CENAIM-ESPOL.