Aplicación de técnicas de aprendizaje automático para la generación de recomendaciones en base a los intereses de los usuarios en las redes sociales
Resumen: Debido al crecimiento de información en redes sociales se ha creado una sobrecarga de información, lo que dificulta a los usuarios encontrar información de acuerdo a sus intereses, por lo que el uso de algoritmos de recomendación nos permite encontrar información, productos o servicios que...
שמור ב:
מחבר ראשי: | |
---|---|
פורמט: | bachelorThesis |
שפה: | spa |
יצא לאור: |
2020
|
נושאים: | |
גישה מקוונת: | http://dspace.utpl.edu.ec/handle/20.500.11962/26042 |
תגים: |
הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
סיכום: | Resumen: Debido al crecimiento de información en redes sociales se ha creado una sobrecarga de información, lo que dificulta a los usuarios encontrar información de acuerdo a sus intereses, por lo que el uso de algoritmos de recomendación nos permite encontrar información, productos o servicios que sean de interés de los usuarios. El presente trabajo de titulación consiste en la aplicación de técnicas de aprendizaje automático para la generación de recomendaciones en base a los interese de los usuarios en redes sociales, donde los ítems a recomendar son los hashtag de la red social twitter. El sistema recomendador está basado en filtrado colaborativo usando el algoritmo K-NN para recomendar hashtags a usuarios de Twitter. Para medir la precisión del sistema recomendador, el algoritmo es evaluado desde dos puntos de vista: evaluación de la predicción en el cual se utiliza el Error Cuadrático Medio y la precisión de las recomendaciones en la que se utiliza métricas como la Precisión, Recall y F-Measure. Finalmente se desarrolla un aplicativo web donde se presenta las recomendaciones de ítems y gráficas de resultados a los usuarios. |
---|