Deep Gaussian processes for the analysis of EEG signals in Alzheimer's diseases
Deep Gaussian Processes (DGPs) are hierarchically represented by a sequential composi- tion of a prior Gaussian processes and are equivalent to a multi-layer neural network (NN) of infinite width. DGPs are non-parametric statistical models and are used to characterize patterns of complex nonlinear s...
保存先:
第一著者: | |
---|---|
フォーマット: | bachelorThesis |
言語: | eng |
出版事項: |
2023
|
主題: | |
オンライン・アクセス: | http://repositorio.yachaytech.edu.ec/handle/123456789/605 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|