Deep Gaussian processes for the analysis of EEG signals in Alzheimer's diseases

Deep Gaussian Processes (DGPs) are hierarchically represented by a sequential composi- tion of a prior Gaussian processes and are equivalent to a multi-layer neural network (NN) of infinite width. DGPs are non-parametric statistical models and are used to characterize patterns of complex nonlinear s...

詳細記述

保存先:
書誌詳細
第一著者: Cumbicus Jiménez, Andy Mauricio (author)
フォーマット: bachelorThesis
言語:eng
出版事項: 2023
主題:
オンライン・アクセス:http://repositorio.yachaytech.edu.ec/handle/123456789/605
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!